当前位置 : bet体育   其他  学术活动

Tilting modules, dominant dimensions and Brauer-Schur-Weyl duality

编辑: 时间: 2020年08月25日 访问次数:0

报告人: 胡峻教授(北京理工大学)
报告时间: 2020年8月31日上午8:50开始
报告地点: 浙大玉泉校区欧阳楼316

摘要: In this talk, we first discuss a criterion for the validity of the double centralizer property with respect to a tilting module over a standardly stratified algebra $A$.  We then apply the criterion to the case when $A$ is quasi-hereditary with a simple preserving duality. We affirmatively answer a question of Stroppel and Mazorchuk by proving the existence of a unique minimal basic tilting module $T$ over $A$ for which $A=\End_{\End_A(T)}(T)$. Finally we apply the results to study the Brauer-Schur-Weyl duality on the dual partially harmonic spaces.

联系人: .cn

bet体育 - 专业投注平台 yb体育|yb体育官网 德甲联赛下注_网址 yb体育|yb体育官网 yabo下载-yabovip官网下载 贝博游戏平台|bet体育 yabo登录-yabo体育登录